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ABSTRACT
In this paper, we introduce polygene-based evolution, a novel frame-
work for evolutionary algorithms (EAs) that features distinctive
operations in the evolution process. In traditional EAs, the prim-
itive evolution unit is gene, where genes are independent compo-
nents during evolution. In polygene-based evolutionary algorithms
(PGEAs), the evolution unit is polygene, i.e., a set of co-regulated
genes. Discovering and maintaining quality polygenes can play an
effective role in evolving quality individuals. Polygenes general-
ize genes, and PGEAs generalize EAs. Implementing the PGEA
framework involves three phases: polygene discovery, polygene
planting, and polygene-compatible evolution. Extensive experi-
ments on function optimization benchmarks in comparison with the
conventional and state-of-the-art EAs demonstrate the potential of
the approach in accuracy and efficiency improvement.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications–Data mining

General Terms: Algorithms, Experimentation, Performance.

Keywords: Polygene, Evolutionary algorithms, Optimization, Data
mining

1. INTRODUCTION
Evolutionary algorithms (EAs) [4] was derived from Darwinian

evolutionary principles and widely applied in computationally dif-
ficult optimization and classification problems [2, 6]. In conven-
tional EAs, the primitive evolution unit is gene, where genes are
independent components during evolution.

In this paper, we introduce a novel polygene-based evolution
framework. In polygene-based evolutionary algorithms (PGEAs),
the primitive evolution unit is polygene. We consider a group of
genes co-regulated and forming a polygene if they frequently occur
in a population. As polygenes generalize genes, PGEA algorithms
generalize EAs.

In biology, a trait, such as height, eye color or body mass, is a
distinct variant of a phenotypic character of an organism. A poly-
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gene is a group of nonallelic genes that together influence a pheno-
typic trait [5]. Over evolutionary time, organisms evolve adaptive
traits that enable them to survive [3].

In EAs, we do not have explicit, observable traits. However,
inspired by the biological phenomenon, we speculate that there
can be polygenes, each being a group of co-regulated genes, that
have direct influence to the goodness of individuals. Thus, in the
PGEA framework, we discover and maintain those quality poly-
genes throughout the evolution process in order to evolve quality
individuals.

Using polygene instead of gene as the primitive evolution unit
can significantly reduce the search space while retaining quality
individuals. For optimization problems, a larger search space con-
tains more feasible solutions and may lead to better results if the
search is exhaustive. However, search heuristics such as EAs only
search a very small part of the search space. PGEAs allow search
to be done within a significantly reduced space that retains quality
individuals, having increased probability to find good solutions.

In principle, PGEAs are highly promising as a new optimization
tool. Implementation can also play a critical role in materializing
the potential of the framework. In this study, we use a three-phase
approach: (I) polygene discovery, (II) polygene planting, and (III)
polygene-compatible evolution. For Phase I, we adopt an associa-
tive classification-based approach to discover quality polygenes.
For Phase II, we perform probabilistic planting to maintain the
diversity of individuals. For Phase III, we incorporate polygene-
compatible crossover and mutation in producing next generation of
individuals.

2. BACKGROUND
Association rules. The association rule mining problem [1] was
first introduced in the context of mining transaction databases.

Let A be a set including all items. A set X = {i1, i2, . . . , ik} ⊆
A is called an itemset, or k-itemset because X contains k items. A
transaction over A is a tuple T = (tid, I) where tid is the transac-
tion identifier and I is an itemset. T is said to support X if X ⊆ I .
A transaction database D over A is a set of transactions over A.

The support of an itemset X in D is the probability that X occurs
in D, which is estimated by the proportion of the transactions in D

containing X , formally, sup(X) = |{T |T=(tid,I)∈D∧X⊆I}|
|D| .

An association rule is an implication X ⇒ Y , where X, Y ⊆ A
and X ∩ Y = ∅. The support of X ⇒ Y is calculated as the
probability that a transaction in D contains both X and Y , formally,
sup(X ⇒ Y ) = sup(X ∩ Y ). The confidence of X ⇒ Y is
calculated as the conditional probability that a transaction having
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X also contains Y , formally, conf(X ⇒ Y ) = Prob(Y |X) =
sup(X∩Y )

sup(X)
.

Classification based on associations (CBA). CBA is the first al-
gorithm for associative classification with ruleitems. A ruleitem is
a frequent and accurate association rule X ⇒ y, where X is an
itemset, and y ∈ Y is a class label. Let Y = {y1, y2, . . . , yn}
be the set of the class labels. According to the definitions of the
association rules, the support of the ruleitem X ⇒ y1 is calculated
as sup(X ⇒ y1) = sup(X ∩ {y = y1}), and the confidence
is calculated as conf(X ⇒ y1) = sup(X∩{y=y1})

sup(X)
. Particularly,

k-ruleitem denote a ruleitem X ⇒ y where X has k items. An
ruleitem is frequent if its support is no less than a given minimum
frequency threshold θ. An ruleitem is accurate if its confidence is
no less than a given minimum accuracy threshold ϑ.

3. THE PGEA FRAMEWORK

3.1 Definitions

DEFINITION 1. Gene. In an individual, a gene is a tuple (i, v)
where i is the position of the gene in the individual, and v ∈ {0, 1}
is the value.

An individual is a set of such tuples. Since the position infor-
mation is redundant, for simplicity, an individual can also be rep-
resented as a sequence 〈v1v2 . . . vm〉. For example, 〈0001101010〉
represents the same gene as {(1, 0), (2, 0), . . . , (9, 1), (10, 0)}. In
the literature, sometimes “chromosome" is used for “gene".

In the PGEA framework, we consider a group of genes co-regulated
and forming a polygene if they frequently occur in a population.

DEFINITION 2. Polygene. In a population P , a set of genes
α = {(i1, v1), (i2, v2), . . . , (il, vl)} form a polygene if α occurs
≥ θ times in P .

For example, in individual 〈0001101010〉, suppose α = {(2, 0),
(5, 1)} (the bold font genes) satisfies the frequency threshold, then
α forms a polygene. A polygene with length l = 1 is a singleton
polygene. Polygenes can overlap, i.e., a same gene may occur in
two or more different polygenes.

We are particularly interested in the quality polygenes. A ba-
sic observation is that good individuals often contain many quality
polygenes, medium individuals usually contain some of them, but
bad individuals generally contain few of them. Thus, quality poly-
genes, referring to elite polygenes (elites for short), can be used to
distinguish good individuals from bad ones.

DEFINITION 3. Elite Polygene. Let P be the population set
containing all possible individuals. Each individual in P can be
labeled as high, medium and low respectively based on their fit-
ness scores. This way,P can be divided into 3 subsets: high-quality
Ph, medium-quality Pm, and low-quality Pl. A polygene α is an
elite polygene if the ruleitem α⇒ high is a class association rule
forPh∪Pl, i.e., sup(α⇒ high) > ϑs ∧ conf(α⇒ high) > ϑc,
where 0 < ϑs, ϑc < 1.

Unfortunately, cannot traverse all possible individuals in P to
get Ph and Pl exactly, but can only use the current population to
estimate them approximately. Due to the inaccuracy of the training
data, the quality of the generated elites with associative classifica-
tion cannot be guaranteed. Thus, a further verification is necessary
for elite generation.

3.2 Overview
Our PGEA framework uses polygenes as the primitive evolution

unit. Its evolution process is similar to that of EAs. After initializa-
tion, it iterates from generation to generation.

There are three phases within each generation: (I) polygene dis-
covery, (II) polygene planting, and (III) polygene-compatible evo-
lution. Algorithm 1 summarizes them in pseudocode. Line 1 per-
forms initialization, i.e., randomly generating an initial population
of individuals, evaluating their fitness scores, and selecting the best
individual from them based on their fitness scores. Lines 2–6 show
the iterative evolution process of PGEA from generation to gener-
ation. In particular, line 3 is for Phase I, polygene discovery; line 4
is for Phase II, polygene planting; line 5 is for Phase III, polygene-
compatible evolution.

Algorithm 1: PGEA Framework

Input : fitness function f , termination criteria tc, planting
probability ε

Output: best individual b

P0 ←Initialize (); // initial population1

repeat2

E ←Mine (Pg−1); // polygene discovery3

Plant (Pg−1, E, ε); // polygene planting4

Pg ← Evolve (Pg−1); // polygene-compatible evol.5

until tc are met6

3.3 Phase I: Polygene Discovery
In Phase I, we mine polygenes using frequent pattern mining

techniques and select elite ones with a CBA-based approach.
Database transformation. Let P be the current population con-
taining N individuals. Let Ph be the best ξ × N individuals in
P with highest fitness scores, where each is labeled as high, and
0 < ξ < 1 is called high-quality proportion. Let Pl be the worst
η × N individuals with lowest fitness scores in P , where each is
labeled as low, and 0 < η < 1 is called low-quality proportion.
Other individuals are labeled as medium.

For database transformation, each gene (i, v) in p is transformed
into an item. Let A be the itemset containing all potential items.
Since for conventional EA, there are m positions in each individual,
and for each gene position there are 2 potential values 0 and 1, there
are totally 2m items in A.

Each individual p = 〈v1v2 . . . vm〉 is transformed into a trans-
action Xp = (tidp, Ip), where Ip = {(1, v1), . . . , (m, vm)}. This
way, the population P are transformed into a transaction database
D, where each transaction is also labeled as high, medium, or
low.
Polygene mining. According to Definition 2, polygenes P can be
mined from the transaction database D with pattern mining. Since
efficiency has remained as a major challenge for pattern mining,
to improve efficiency, we effectively reduce the number of mined
polygenes without loss of quality by adding constraints on poly-
genes. (1) Only the polygenes where genes represent the same vari-
able are considered because these genes are directly related to each
other in forming a value of a variable. (2) The longest length of
the frequent patterns (polygenes) is controlled by a predetermined
parameter δ in order to reveal the main interdependency between
genes but ignore the trivial cases.
Candidate elite selection. We consider quality polygene frequently
occurring in high-quality individuals but seldom in low-quality ones,
and candidate elite polygenes can be selected with associative clas-
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sification. In our framework, a CBA-based approach is adopted to
generate candidate elites based on the mined polygenes P .

Let α be a polygene mined from the transaction database D. A
ruleitem α⇒ high is generated as a candidate elite polygene. Let
Dhl be the transaction set containing all transactions with labels
high and low in D. According to the definition 3, α is an elite if
sup(α⇒ high) > ϑs ∧ conf(α⇒ high) > ϑc based on Dhl,
where 0 < ϑs, ϑc < 1.
Elite verification. As mentioned in Section 3.1, a further verifica-
tion is necessary for elite generation because of the inaccuracy of
the training data. In our framework, a testing-based validation is
adopted.

Let α be a candidate elite polygene. Let N be the number of
individuals in the population. Let κ be the sample proportion,
i.e., κ × N individuals are sampled for verification. Let S =
{ps1 , ps2 , . . . psκ×N } be the set of sampled individuals, where each
individual psi is associated with a fitness score f(psi). After plant-
ing α into S (see Section 3.4), S is transformed into Sα = {pα

s1 ,
pα

s2 , . . . pα
sκ×N

}. Polygene α is verified as an elite if better in-
dividuals can be generated after planting, formally, Δf(S, α) =�κ×N

i=1
f(pα

si
)−�κ×N

i=1
f(psi) < 0.

3.4 Phase II: Polygene Planting
In Phase II, we plant the discovered quality polygenes to the cur-

rent population to “magnify" their presence for their survival from
evolution operations. For diversity, we adopt a probabilistic plant-
ing approach, where each polygene is selected for planting with a
probability ε, called planting probability.

Let α = {(i1, v1), (i2, v2), . . . , (il, vl)} be the selected poly-
gene. Let p be an individual. The planting process of α in p
is to convert the gene values of p at position i1, i2, . . . , il into
v1, v2, . . . , vl respectively if a random generated number is less
than ε.

EXAMPLE 1. Let individual p = 〈00000101〉 be represented
with 8 binary genes. Let α = {(6, 0), (8, 0)} be an elite poly-
gene for planting. After planting, the individual becomes p′ =
〈00000000〉.
3.5 Phase III: Polygene-Compatible Evolution

For Phase III, polygene-compatible crossover and mutation are
incorporated, where polygene is the unit of operation.

For polygene-compatible single-point crossover, the most impor-
tant issue is to guarantee that polygenes in parent individuals can
be inherited as a whole by offsprings without being broken.

DEFINITION 4. Polygene-Compatible Crossover. A crossover
for a pair of individuals p1 and p2 is polygene-compatible if their
polygenes can be inherited as a whole in their offspring individuals
p′
1 and p′

2.

EXAMPLE 2. Let p1 and p2 be 2 individuals and they contain
polygenes α = {(2, 0), (5, 1)} and β = {(3, 1), (5, 0), (6, 0)}. The
crossover point can be selected at position 7 (genes in italic font).
As a result, offsprings p′

1 (inheriting α) and p′
2 (inheriting β) can

be generated by crossover.

p1 = 〈
� �� �
000110�1010〉

p2 = 〈�011000
����
0100〉

=⇒ p′
1 = 〈

� �� �
000110

����
0100〉

p′
2 = 〈�011000�1010〉

Mutation of a polygene can be defined in various ways, where 1
or more genes in a polygene can be mutated. In our study, all genes
in the polygene are mutated simultaneously during a polygene-
compatible mutation operation.

Table 1: Properties of The Benchmarks
Property F1 F2 F3 F4 F5 F6

Multi-model � � � � � �

Shifted � � � � � �

Non-separable � � � � � �

Multi-minimum � � � � � �

x∗ o o o + 1 o o o
F (x∗) fb fb fb fb fb fb

DEFINITION 5. Polygene-Compatible Mutation. In a polygene-
compatible mutation, each gene (ij , vj) in polygene α = {(i1, v1),
(i2, v2), . . . , (il, vl)} is mutated to (ij , vj).

3.6 Discussion
Although the PGEAs proposed in this study are based on the

binary representation, it is possible to implement PGEAs with non-
binary representations such as real number and tree. For the real
number representation, instead of considering (i, v) as an item,
a mapping function f : R → L can be used to map the infi-
nite gene value set R into a finite discrete label set L, e.g., L =
{low,medium,high}. Then, we consider (i, f(v)) as an item.
For the tree representation, we can use frequent tree/graph pattern
mining for the discovery of polygenes.

4. EXPERIMENTS
Comparison partner. We chose conventional EA as our main
comparison partner. Our implementation of PGEAs was based on
conventional EAs. A direct comparison of the two will provide
valuable and irreplaceable insights.

In addition, we also used two state-of-the-art EAs including a
diploid EA [6] and a classic EDA, named population-based incre-
mental learning (PBIL) [2].
Benchmark functions. We performed experiments on functional
optimization problems to validate the PGEA framework. The bench-
mark functions are listed as follows [7].

F1(x) =
�n

i=1
z2

i + fb, where z = x− o.
F2(x) = max1≤i≤n{|zi|}+ fb, where z = x− o.
F3(x) =

�n−1

i=1

�
100(zi+1 − z2

i )2 + (1− zi)
2
	

+ fb, where z =
x− o + 1.
F4(x) =

�n

i=1

�
z2

i − 10 cos(2πzi + 10)
	
+fb, where z = x−o.

F5(x) = 1
4000

�n

i=1
z2

i −

n

i=1
cos
�

zi√
i

�
+ 1 + fb, where z =

x− o.
F6(x) = −20 exp

�
−0.2



1
n

�n

i=1
z2

i

�
−exp

�
1
n

�n

i=1
cos (2πzi)

	
+

20 + e + fb, where z = x− o.

Since most benchmark functions were proposed for EAs with
real number representations, without loss of generality, the follow-
ing restrictions were applied in our experiments: (1) According to
traditional experimental settings for EAs with binary representa-
tion, each variable xi was represented by 10 binary genes, i.e., the
range of xi was restricted to (−5.12, 5.12). (2) In the benchmark
functions, o and fb were predetermined as [1.28, . . . , 1.28] and -
2.56 respectively.

Table 1 shows the properties of these benchmark functions, in-
cluding whether they are multi-model, shifted or non-separable func-
tions, whether they have multiple local minimums, the global opti-
mum point x∗, and the global optimization value F (x∗).
Parameter settings. For each function, 30 variables were used.
In each generation 100 individuals were maintained. PGEA ter-
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Table 2: Error Values Ei(x) = Fi(x) - Fi(x∗)
Items Algs F1 F2 F3 F4 F5 F6

E(x)

PGEA 0.00 0.00 245 27.4 0.00 0.03
EA 2.29 1.82 308 25.9 1.04 2.51
Diploid 0.00 0.00 255 40.9 0.01 0.03
PBIL 0.02 0.00 156 22.8 0.00 0.09

δE(x)

PGEA 0.00 0.00 90.8 7.78 0.03 0.00
EA 0.26 0.47 110 6.85 0.01 0.04
Diploid 0.00 0.00 148 10.5 0.02 0.00
PBIL 0.03 0.00 120 5.16 0.01 0.08
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Figure 1: Number of generations before convergence.

minated if the best solution cannot be improved for more than 50
generations or the maximum number of generations of 1000 was
reached. These parameters were used for all algorithms in compar-
ison.

The following parameter settings were used only for PGEA. In
the polygene discovery phase, for each generation the best ξ = 5%
and worst η = 5% individuals were considered as high-quality
and low-quality individuals respectively. An itemset with maxi-
mum length δ = 2 was frequent if its support was no less than
θ = 50%. A ruleitem was a class association rule if its support and
confidence were no less than ϑs = 30% and ϑc = 70% respec-
tively. κ = 5% of individuals were sampled for elite verification.
In polygene planting phase, each elite was selected for planting
with a probability ε = 10%.
Performance. We ran each algorithm 25 times. The results are
summarized in Table 2 and Fig. 4. Table 2 presents the error val-
ues Ei(x) = Fi(x) − Fi(x∗) and their standard deviations for the
benchmarks. From the table we can see that PGEA significantly
gains in accuracy.

PGEA returned the most accurate optimization results for almost
all benchmarks. For many functions, PGEA significantly outper-
formed the conventional EA. For example, for F2, F5 and F6, the
mean error values by the conventional EA are 2.2909, 1.0385 and
2.5053 while those by PGEA are 0.0016, 0.0097 and 0.0307 re-
spectively. Besides, although PGEA ignored the polygenes cross-
ing different variables (see Section 3.3), PGEA still significantly
outperformed the conventional EA for 4 (F2, F3, F5, F6) out of 5
non-separable benchmark functions.

Fig. 2 shows the convergence rates within the first 100 genera-
tions. Fig. 4 shows the number of generations before convergence.
From the figures we can see that PGEA significantly gains in effi-
ciency. PGEA converged with the least number of generations for
5 out of 6 functions. Note that for F1, F2, F5 and F6, although
the conventional EA converged the fastest, it failed to return rea-
sonable results (see Table 2) and thus not considered. In general,
PGEA converges significantly faster than the conventional EA. For
example, for F3 and F4, PGEA took on average 316.56 and 450.6

generations to converge while conventional EA failed to converge
within 1000 generations.
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Figure 2: PGEA vs. comparison partners.
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