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Abstract. Backtracking search algorithm is a novel population-based stochastic 
technique. This paper proposes an improved backtracking search algorithm for 
constrained optimization problems. The proposed algorithm is combined with 
differential evolution algorithm and the breeder genetic algorithm mutation op-
erator. The differential evolution algorithm is used to accelerate convergence at 
later iteration process, and the breeder genetic algorithm mutation operator is 
employed for the algorithm to improve the population diversity. Using the supe-
riority of feasible point scheme and the parameter free penalty scheme to handle 
constrains, the improved algorithm is tested on 13 well-known benchmark prob-
lems. The results show the improved backtracking search algorithm is effective 
and competitive for constrained optimization problems. 

Keywords: constrained optimization, backtracking search algorithm, differen-
tial evolution algorithm, breeder GA mutation operator, mutation. 

1 Introduction 

Decision science and the analysis of physical system attach great importance to opti-
mization techniques. Optimization problems can be mathematically formulated as the 
minimization or maximization of objective functions subject to constraints on their 
variables. Recently, nature-inspired meta-heuristic algorithms designed for solving 
various global optimization problems have been changing dramatically, e.g. genetic 
algorithm (GA) [1], differential evolution algorithm (DE) [2], ant colony optimization 
algorithm (ACO) [3], particle swarm optimization algorithm (PSO) [4,5], artificial 
bee colony algorithm (ABC) [6], social emotion optimization algorithm (SEOA) 
[7,8,9,10,11], bat algorithm (BA)  [12], firefly algorithm (FA) [13], harmony search 
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algorithm (HS) [14], biogeography-based optimization algorithm (BBO) [15], group 
search optimizer (GSO) [16], and backtracking search optimization algorithm (BSA) 
[17]. 

BSA, a new nature-inspired algorithm proposed by Civicoglu, is effective, fast and 
capable of solving different numerical optimization problems with a simple structure. 
It has been proved that BSA can solve the benchmark problems more successfully 
than the comparison algorithms e.g. PSO, CMAES, ABC and JDE [17]. To our know-
ledge, no one has so far attempted making research on the BSA algorithm for  
constrained optimization problems. In light of this, we propose an improved BSA 
algorithm for constrained optimization problems, called IBSA. IBSA divides the evo-
lutionary process into two phases. In the first phase, the proposed algorithm employs 
the mutation and crossover operators used in the standard BSA to take advantage of 
information gained from previous population. In the second phase, the mutation and 
crossover operators employed in the standard differential evolution algorithm is used 
to accelerate convergence and guide algorithm to find the optimal solution. In addi-
tion, the breeder genetic algorithm mutation is utilized to improve the population 
diversity with a small probability in the later phase.  

The remainder of this paper is organized as follows. Section 2 describes general 
formulation of constrained optimization problem and constraint handling method. 
Section 3 introduces improved backtracking search algorithm. Results are presented 
in Section 4 and the concluding remarks are made in Section 5. 

2 Constraint Problem and Constraint Handling Method 

2.1 Constraint Problem 

In the field of decision science and the analysis of physical system, there are a bundle 
of constrained optimization problems. Generally speaking, a constrained optimization 
problem can be described as follows (without loss of generality minimization is con-
sidered here). 

 min =min{ ( ) | }f f x x ∈ Ω  (1) 

Feasible region： 

 { | ( ) 0 , ( ) 0 , , 1,... 1,..., }n
i j m m mx g x h x l x u for i p j q mΩ = ∈ ≤ = ≤ ≤ = = ∀  (2) 

In the above equations,  
1 2( , ,..., )Dx x x x S= ∈ Ω ⊆

  is a D-dimensional vector. Each variable  

xm subjects to Lower bound lm and upper bound um. f(x) is the objective function, gi(x) 
is the i-th inequality constraint, hj(x) is the j-th equality constraint. We divide con-
straints into four categories broadly, linear inequality constraints, nonlinear inequality 
constraints, linear equality constraints and nonlinear equality constraints. Most con-
straint handling techniques tend to deal with inequality constraints only. Consequent-
ly, we transform equality constraints into inequality constraints of the form |hj(x)-δ|≤0, 
where δ is the constraint violation tolerance (a small positive value close to zero). 
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2.2 Constraint Handling Method 

There are lots of constrained handling methods used in constrained optimization prob-
lems, but the penalty function has been used most widely. The basic penalty function 
can be formulated as follows: 

 ˆ ( ) ( ) ( )f x f x R G x= + ×  (3) 

 
1

( ) max[0, ( )]
s

q
j

i
G x R g x

=
=   (4) 

where R is the penalty parameter, and f̂  is called an exact penalty function. 

The superiority of feasible points (SFP) scheme is based on the static penalty me-
thod but includes an additional term in formulation (1). The purpose of this additional 
function is to ensure that infeasible points always have worst fitness values than feas-
ible points. Eq.(1) can be rewritten as follows, where Tk is the population composed of 
trial individuals vi at the k-th iteration. 
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The value α is calculated by: 
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max[0 , max ( ) min min [ ( ) ( )] ]
k kk z T Tv T

f v f z R G zα
∈ ∩Ω∈ ∩Ω

= − + ×  (7) 

The method of parameter free penalty (PFP) scheme is a modification of the SFP 
Scheme. The most significant feature is the lack of a penalty coefficient R. The fitness 
function in the PFP scheme is as follows:  

 ˆ ( ) ( ) ( ) ( ),k k k k k k
i i i k i if v f v G v v v T= + + Θ ∈  (8) 
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3 Improved Backtracking Search Algorithm 

3.1 BSA 

BSA is a population-based iterative evolutionary algorithm designed to be a global 
minimizer. BSA maintains a population of N individual and D-dimensional members 
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for solving bound constrained global optimization. Moreover, BSA possesses a mem-
ory in which it stores a population from a randomly chosen previous generation for 
use in generating the search-direction matrix [17]. To implement BSA, the following 
processes need to be performed. 

BSA initials current population and history population according to Eq.(10) and 
(11) respectively where U is the uniform distribution. 

 , ~ ( , )i j j jP U l u  (10) 

 , ~ ( , )i j j joldP U l u  (11) 

At the start of each iteration, an oldP redefining mechanism is introduced in BSA 
through the rule defined by Eq.(12) and (13), where a, b~ U(0,1) is satisfied.  

 
,

,

P a b
oldP

oldP otherwise

<
= 


 (12) 

 : ( )oldP permuting oldP=  (13) 

BSA has a random mutation strategy that uses only one direction individual for 
each target individual. BSA generates a trial population, taking advantage of its expe-
riences from previous generations. F controls the amplitude of the search-direction 
matrix. The initial form of the trial individual ui is created by Eq.(14). 

 ( )i i i iu P F oldP P= + × −  (14) 

Trial individuals with better fitness values for the optimization problem are used to 
evolve the target population individuals. BSA generates a binary integer-valued ma-
trix called map guiding crossover directions. Eq.(15) shows BSA’s crossover strategy. 
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At this step, a set of vi which has better fitness values than the corresponding xi are 
utilized to renew the current population as next generation population according to a 
greedy selection mechanism as shown in Eq.(16). 
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 (16) 

3.2 Differential Evolution 

Differential evolution (DE) is proposed by Storn and Price in 1995. So far, more than 
six mutation strategies have been proposed [18, 19] owing to its simple yet efficient 
properties. Compared with original DE mutation, “Rand-to-best” [18] mutation is able 
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to improve population convergence, guiding evolution towards better directions. 
“Rand-to-best” mutation strategy is introduced as follows: 

 1 2( )best r riu x F x x= + × −
   

 (17) 

Where 1r , 2r  are integers randomly selected from 1 to N, and satisfy 
1 2r r≠ . The 

scaling factor F is a real number randomly selected between 0 and 1. bestx


 is the best 
individual in the current population, and 

iu
  is the mutant vector.  

Subsequently, the crossover operation is implemented to generate a trial vector vi 
shown by Eq. (18). Where Ii is an integer selected randomly from 1 to D, rj is selected 
randomly from 1 to 0 and j denotes the j-th dimension. The index k is the number of 
iteration, and Cr is the crossover control parameter. 
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3.3 Breeder Genetic Algorithm Mutation Operator 

 

15

,
0,

,

2 1/
, 1,...,

s
i j i s

si j

i j

x rang rand D
v j D

x otherwise

α −

=

 ± × <= =



  (19) 

 6( ( ) ( )) (1 _ / _ )irang u i l i current gen total gen= − × −  (20) 

Improved version of breeder genetic algorithm mutation operator proposed in [20, 21]  
intends to produce a highly explorative behavior in the early stage and ensures the 
global convergence in the later stage. Where U(0,1) is the uniform random real num-
ber generator between 0 and 1. The plus or minus sign is selected with a probability of 
0.5, and {0,1}sα ∈  is randomly generated with expression ( 1) 1 /16sP α = = . Current 

generation number is denoted as current_gen, and total generation number is denoted 
as total_gen. Individuals in the interval [ , ]i i i ix rang x rang− +  are generated after IBGA 

mutation.  

3.4 IBSA 

BSA has a powerful exploration capability but a relatively slow convergence speed, 
since the algorithm uses historical experiences to guide the evolution. Focusing on 
excellent convergent performance of “Rand-to-best” mutation, it is combined with 
BSA. Meanwhile, IBGA is utilized to expand population diversity. Pseudo–code of 
IBSA can be present as follows:  

Step 1: Initialize population size N, mutation probability pm, stage control parameter 
rate, crossover probability Cr, total number of iteration IterMax and penalty coeffi-
cient R if SFP is used. 
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Step 2: Initialize population P, and historical population oldP using Eq.(10) and 
Eq.(11), respectively. 

Step 3: Evaluate the population P using Eq.(5) or Eq.(8). 

Step 4: k=0; 

Step 5: Update the historical population oldP using Eq.(12) and Eq.(13). 

Step 6: if k<IterMax*rate then perform mutation and crossover operators according to 
Eq.(14) and Eq.(15), and goto Step 8. 

Step 7: if pm<=0.05 then perform mutation operator using Eq.(19), else perform mu-
tation and crossover operators according to Eq.(17) and Eq.(18), where the factor F is 
generated from the range of [-1,-0.4] and [0.4,1] uniformly. 

Step 8: Evaluate the population P using Eq.(5) or Eq.(8), and select the best individual 
Xbest. 

Step 9: k=k+1, if k<IterMax goto Step 5. 

Step 10: output Xbest. 

4 Experiments 

We use a set of 13 benchmark problems [22] in this paper to evaluate the performance 
of BSA, which were tested widely in evolution computation domain to show the per-
formance of different algorithms for constrained optimization problems. The objec-
tive functions can be divided into 6 classes: quadratic, nonlinear, polynomial, cubic, 
linear, and exponential. Main characteristics of these functions are summarized in 
Tab.1. 

Table 1. Main properties of benchmark functions(n: number of variables, |F|/|S|: the ratio of the 
feasible region to the given box constrained area, LI, NE, NI: number of linear inequality, 
nonlinear equality, and nonlinear inequality, a: number of active constraints at optimum) 

 known optimal n Min/Max type f(x) type |F|/|S| LI NE NI a 

G01 -15 13 Minimum quadratic 0.011% 9 0 0 6 

G02 0.803619 20 Maximum nonlinear 99.90% 1 0 1 1 

G03 1 10 Maximum polynomial 0.002% 0 1 0 1 

G04 -30665.539 5 Minimum quadratic 52.123% 0 0 6 2 

G05 5126.4981 4 Minimum cubic 0.000% 2 3 0 3 

G06 -6961.8139 2 Minimum cubic 0.006% 0 0 2 2 

G07 24.306291 10 Minimum quadratic 0.000% 3 0 5 6 

G08 0.095825 2 Maximum nonlinear 0.856% 0 0 2 0 

G09 680.630057 7 Minimum polynomial 0.512% 0 0 4 2 

G10 7049.25 8 Minimum linear 0.001% 3 0 3 3 

G11 0.75 2 Minimum quadratic 0.000% 0 1 0 1 

G12 1 3 Maximum quadratic 4.779% 0 0 93 0 

G13 0.0539498 5 Minimum exponential 0.000% 0 3 0 3 
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Additionally, for each problem, 30 independent runs were performed. Other para-
meters are given in Tab.2. 

Table 2. Parameter values 

 N IterMax Cr pm rate R DIM_RATE 

values 80 10000 0.9 0.05 0.6 1050 1 

Table 3. Results for IBSA using SFP 

  optimal best mean worst std 

G01 -15 -15 -15 -15 0 

G02 0.803619 0.803614 0.788434 0.761742 0.009713 

G03 1 1.012555 1.011447 0.992238 0.003785 

G04 -30665.539 -30665.539 -30665.539 -30665.539 0 

G05 5126.4981 5126.484154 5126.484154 5126.484154 0 

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0 

G07 24.306291 24.306209 24.306214 24.306279 0.000015 

G08 0.095825 0.095825 0.095825 0.095825 0 

G09 680.630057 680.630057 680.630057 680.630057 0 

G10 7049.25 7049.248021 7049.248039 7049.248158 0.000037 

G11 0.75 0.7499 0.7499 0.7499 0 

G12 1 1 1 1 0 

G13 0.0539498 0.053942 0.053942 0.053942 0 

Table 4. Results for IBSA using PFP 

 optimal best mean worst std 

G01 -15 -15 -15 -15 0 

G02 0.803619 0.803615 0.789926 0.75071 0.013549 

G03 1 1.01256 1.010525 0.972599 0.007409 

G04 -30665.539 -30665.539 -30665.539 -30665.539 0 

G05 5126.4981 5126.484154 5126.484154 5126.484154 0 

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0 

G07 24.306291 24.306209 24.306213 24.306235 0.000007 

G08 0.095825 0.095825 0.095825 0.095825 0 

G09 680.630057 680.630057 680.630057 680.630057 0 

G10 7049.25 7049.248021 7049.248051 7049.248432 0.000081 

G11 0.75 0.7499 0.7499 0.7499 0 

G12 1 1 1 1 0 

G13 0.0539498 0.053942 0.06679 0.439383 0.070372 
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4.1 Results of the Proposed Method (IBSA) 

Table 3 and Table 4 list the experimental results of the IBSA algorithm using SFP and 
PFP respectively. They include the known optimal solution for each test problem and 
the obtained best, mean, worst and standard deviation values. The best obtained by 
IBSA, which are same to or better than the known optimal, are marked in boldface. 

As seen from Table 3, the IBSA using SFP algorithm can find the global optimal 
solutions for 12 problems except G02 in terms of the best results. However, result for 
problem G02 is very close to the optimal. The standard deviations for G01, G04, G05, 
G06, G08, G09, G11, G12 and G13 are zero, so we consider IBSA-PFP algorithm is 
under stable condition. G07 has found better solution than the known optimal solu-
tion. G03, G05, G11 and G13 are obtained better solutions as well, as a result of δ 
settings. 

Table 4 shows the IBSA using PFP algorithm can also find the global optimization 
for 12 problems except G02 which is very close to the optimal. Within the allowed 
equality constraints violation ranges, better solutions have been found than the known 
optimal solutions such as G3, G5, G10, G11 and G07.As for problem G13, there are 
29 out of 30 times finding better solution than the optimal. 

Table 5. Results for BSA using SFP 

  best of IBSA best mean worst std 

G01 -15 -15 -15 -15 0 

G02 0.803614 0.80358 0.79666 0.785462 0.00506 

G03 1.012555 1.012298 1.002612 0.954234 0.016466 

G04 -30665.539 -30665.539 -30665.539 -30665.539 0 

G05 5126.484154 5126.4967 5198.319116 5415.4138 77.85568 

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0 

G07 24.306209 24.306242 24.321343 24.343854 0.018588 

G08 0.095825 0.095825 0.095825 0.095825 0 

G09 680.630057 680.630057 680.630057 680.630057 0 

G10 7049.248021 7049.2555 7049.617975 7052.634 0.633024 

G11 0.7499 0.7499 0.749901 0.749918 0.000003 

G12 1 1 1 1 0 

G13 0.053942 0.055766 0.633725 0.999993 0.305339 

4.2 Comparison with BSA Using Penalty Function 

We compare results of IBSA using penalty functions from Table 3 and Table 4 with 
BSA using penalty functions from Table 5 and Table 6 respectively. It can be found 
that IBSA performs far superior to BSA when solving problem G2, G3, G05, G07, 
and G10.When it comes to problem G13, IBSA successfully finds global optimization 
29 times in 30 runs. However, there is only once that BSA finds the optimal. Im-
proved strategies on BSA enhance the stability of the algorithm. 
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Table 6. Results for BSA using PFP 

  best of IBSA best mean worst std 

G01 -15 -15 -15 -15 0 

G02 0.803615 0.803599 0.798024 0.792409 0.005266 

G03 1.01256 1.012417 0.993189 0.899105 0.031189 

G04 -30665.539 -30665.539 -30665.539 -30665.539 0 

G05 5126.484154 5126.496714 5215.3329 5477.3847 114.543 

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0 

G07 24.306209 24.306244 24.323931 24.343783 0.018832 

G08 0.095825 0.095825 0.095825 0.095825 0 

G09 680.630057 680.630057 680.630057 680.630057 0 

G10 7049.248021 7049.257983 7049.394 7049.7464 0.11844 

G11 0.7499 0.7499 0.7499 0.749901 0 

G12 1 1 1 1 0 

G13 0.053942 0.069471 1.01215 13.782101 2.428104 

Table 7. Comparison results with other algorithms using penalty function 

 optimal IBSA MGSO SAPF OPA 

G01 -15 -15 -15.000 -15.000 -15.000 

G02 0.803619 0.803615 0.803457 0.803202 0.803619 

G03 1 1.012555 1.00039 1 0.747 

G04 -30665.539 -30665.539 -30665.539 -60,665.401 -30,665.54 

G05 5126.4981 5126.484154 5,126.50 5,126.91 5,126.50 

G06 -6961.8139 -6961.8139 –6,961.8139 –6,961.046 –6,961.814 

G07 24.306291 24.306209 24.917939 24.838 24.306 

G08 0.095825 0.095825 0.095825 0.095825 0.095825 

G09 680.630057 680.630057 680.646 680.773 680.63 

G10 7049.25 7049.248021 7,052.07 7,069.98 7,049.25 

G11 0.75 0.7499 0.7499 0.749 0.75 

G12 1 1 1 1 1 

G13 0.0539498 0.053942 0.058704 0.053941 0.447118 

4.3 Comparison with Other Algorithms Using Penalty Function 

Constraint handling method highly affects the performance of intelligent algorithm 
for constrained optimization. To test the performance of the IBSA, we compare it 
with other algorithms. 
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The three algorithms are based on penalty function, such as modified group search 
optimizer algorithm with penalty function (MGSO) [23], genetic algorithm (GA) with 
a self-adaptive penalty function (SAPF) [24], over-penalty approach (OPA) [25]. 
Comparison results are summarized in Table 7. The best optimum values are listed. 

As seen from Table 7, the performance of IBSA is much better than MGSO, SAPF, 
OPA on problems G03, G05, G07, G09 and G10 according to the best results ob-
tained from algorithms with penalty function. Problem G01, G08, G11, G12 can be 
also solved successfully by IBSA. For problems g04, and g06, MGSO, OPA, and 
IBSA show the similar performance in terms of the best optimum, and better than 
SAPF. In all, using penalty function for handling constraint, IBSA shows better per-
formance than other three algorithms for most problems. 

4.4 Comparison with Other Algorithms Using Different Constraint Handling 
Methods 

We employs three competitive evolutionary algorithms to further compare IBSA with 
other algorithms with different constraint handling methods, which were stochastic 
ranking (SR) method [22], improved stochastic ranking (ISR) [25] evolution strategy, 
and the simple multimember evolutionary strategy (SMES) [26]. Comparison results 
are summarized in Table 8.  

Table 8. Comparison results with other algorithms using different constraint handling methods 

  optimal IBSA SR ISRES  SMES  

G01 -15 -15.000 -15.000 -15.000 -15.000 

G02 0.803619 0.803615 0.803516 0.803519 0.803601 

G03 1 1.012555 1 1.001 1.000 

G04 -30665.539 -30665.539 -30,665.539 –30,665.539 -30,665.54 

G05 5126.4981 5126.484154 5,126.50 5,126.50 5,126.60 

G06 -6961.8139 -6961.8139 –6,961.814 –6,961.814 –6,961.814  

G07 24.306291 24.306209 24.306 24.306 24.327 

G08 0.095825 0.095825 0.095825 0.095825 0.095825 

G09 680.630057 680.630057 680.63 680.63 680.632 

G10 7049.25 7049.248021 7,049.25 7,049.25 7,051.90 

G11 0.75 0.7499 0.75 0.75 0.75 

G12 1 1 1 1 1 

G13 0.0539498 0.053942 0.053957 0.053957 0.053986 

As seen from Table 8, Problem G01, G03, G04, G06, G08, G11 and G12 can be 
found optima by these four algorithms. IBSA performs better when dealing with G03, 
G05 and G13. For problems G07, G09 and G10, IBSA, SR, and ISRES show the 
similar performance in terms of the best optimum, and better than SMES. 
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5 Conclusion 

This paper proposes an improved version BSA algorithm, called IBSA, which is very 
effective for solving constrained optimization problems. The proposed algorithm 
employs BSA operations, variant DE operations, and IBGA mutation at different 
stages. IBSA has better performance than BSA using PFP and SPF, and other three 
algorithms using penalty function to handle constraints according to experimental 
results. Comparing with other algorithms with different constraint handling methods, 
the results show that IBSA is comparable with its competitors. As a consequence, the 
effect of constraint handling methods on the performance of IBSA algorithm can be 
investigated in future works. Another direction is to improve algorithm to enhance 
accuracy of finding global optimum on some problems including equality constraint, 
such as G03 and G13. 
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