

R. Buchmann et al. (Eds.): KSEM 2014, LNAI 8793, pp. 222–233, 2014.
© Springer International Publishing Switzerland 2014

An Improved Backtracking Search Algorithm
for Constrained Optimization Problems

Wenting Zhao1, Lijin Wang1,2, Yilong Yin1,*, Bingqing Wang1,
Yi Wei1, and Yushan Yin1

1 School of Computer Science and Technology,
Shandong University, Jinan, 250101, P.R. China
wenting.wentingzhaoid@gmail.com,

yilong.ylyin@sdu.edu.cn, bingqing.wangbqing@qq.com,
{yi.weiyi1991,yushan.yinyushande2012}@163.com

2 College of Computer and Information Science,
Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China

lijin.lijinwang@fafu.edu.cn

Abstract. Backtracking search algorithm is a novel population-based stochastic
technique. This paper proposes an improved backtracking search algorithm for
constrained optimization problems. The proposed algorithm is combined with
differential evolution algorithm and the breeder genetic algorithm mutation op-
erator. The differential evolution algorithm is used to accelerate convergence at
later iteration process, and the breeder genetic algorithm mutation operator is
employed for the algorithm to improve the population diversity. Using the supe-
riority of feasible point scheme and the parameter free penalty scheme to handle
constrains, the improved algorithm is tested on 13 well-known benchmark prob-
lems. The results show the improved backtracking search algorithm is effective
and competitive for constrained optimization problems.

Keywords: constrained optimization, backtracking search algorithm, differen-
tial evolution algorithm, breeder GA mutation operator, mutation.

1 Introduction

Decision science and the analysis of physical system attach great importance to opti-
mization techniques. Optimization problems can be mathematically formulated as the
minimization or maximization of objective functions subject to constraints on their
variables. Recently, nature-inspired meta-heuristic algorithms designed for solving
various global optimization problems have been changing dramatically, e.g. genetic
algorithm (GA) [1], differential evolution algorithm (DE) [2], ant colony optimization
algorithm (ACO) [3], particle swarm optimization algorithm (PSO) [4,5], artificial
bee colony algorithm (ABC) [6], social emotion optimization algorithm (SEOA)
[7,8,9,10,11], bat algorithm (BA) [12], firefly algorithm (FA) [13], harmony search

* Corresponding author.

 An Improved BSA for Constrained Optimization Problems 223

algorithm (HS) [14], biogeography-based optimization algorithm (BBO) [15], group
search optimizer (GSO) [16], and backtracking search optimization algorithm (BSA)
[17].

BSA, a new nature-inspired algorithm proposed by Civicoglu, is effective, fast and
capable of solving different numerical optimization problems with a simple structure.
It has been proved that BSA can solve the benchmark problems more successfully
than the comparison algorithms e.g. PSO, CMAES, ABC and JDE [17]. To our know-
ledge, no one has so far attempted making research on the BSA algorithm for
constrained optimization problems. In light of this, we propose an improved BSA
algorithm for constrained optimization problems, called IBSA. IBSA divides the evo-
lutionary process into two phases. In the first phase, the proposed algorithm employs
the mutation and crossover operators used in the standard BSA to take advantage of
information gained from previous population. In the second phase, the mutation and
crossover operators employed in the standard differential evolution algorithm is used
to accelerate convergence and guide algorithm to find the optimal solution. In addi-
tion, the breeder genetic algorithm mutation is utilized to improve the population
diversity with a small probability in the later phase.

The remainder of this paper is organized as follows. Section 2 describes general
formulation of constrained optimization problem and constraint handling method.
Section 3 introduces improved backtracking search algorithm. Results are presented
in Section 4 and the concluding remarks are made in Section 5.

2 Constraint Problem and Constraint Handling Method

2.1 Constraint Problem

In the field of decision science and the analysis of physical system, there are a bundle
of constrained optimization problems. Generally speaking, a constrained optimization
problem can be described as follows (without loss of generality minimization is con-
sidered here).

 min =min{ () | }f f x x ∈ Ω (1)

Feasible region：

 { | () 0 , () 0 , , 1,... 1,..., }n
i j m m mx g x h x l x u for i p j q mΩ = ∈ ≤ = ≤ ≤ = = ∀ (2)

In the above equations,
1 2(, ,...,)Dx x x x S= ∈ Ω ⊆

 is a D-dimensional vector. Each variable

xm subjects to Lower bound lm and upper bound um. f(x) is the objective function, gi(x)
is the i-th inequality constraint, hj(x) is the j-th equality constraint. We divide con-
straints into four categories broadly, linear inequality constraints, nonlinear inequality
constraints, linear equality constraints and nonlinear equality constraints. Most con-
straint handling techniques tend to deal with inequality constraints only. Consequent-
ly, we transform equality constraints into inequality constraints of the form |hj(x)-δ|≤0,
where δ is the constraint violation tolerance (a small positive value close to zero).

224 W. Zhao et al.

2.2 Constraint Handling Method

There are lots of constrained handling methods used in constrained optimization prob-
lems, but the penalty function has been used most widely. The basic penalty function
can be formulated as follows:

 ˆ () () ()f x f x R G x= + × (3)

1

() max[0, ()]
s

q
j

i
G x R g x

=
= (4)

where R is the penalty parameter, and f̂ is called an exact penalty function.

The superiority of feasible points (SFP) scheme is based on the static penalty me-
thod but includes an additional term in formulation (1). The purpose of this additional
function is to ensure that infeasible points always have worst fitness values than feas-
ible points. Eq.(1) can be rewritten as follows, where Tk is the population composed of
trial individuals vi at the k-th iteration.

 ˆ () () () (),k k k k k k
i i i k i if v f v R G v v v T= + × + Θ ∈ (5)

0

()
k k

ik
k i k k

i

if T or v
v

if T and vα
 ∩ Ω = Φ ∈ ΩΘ =

∩ Ω ≠ Φ ∉ Ω
 (6)

The value α is calculated by:

\()

max[0 , max () min min [() ()]]
k kk z T Tv T

f v f z R G zα
∈ ∩Ω∈ ∩Ω

= − + × (7)

The method of parameter free penalty (PFP) scheme is a modification of the SFP
Scheme. The most significant feature is the lack of a penalty coefficient R. The fitness
function in the PFP scheme is as follows:

 ˆ () () () (),k k k k k k
i i i k i if v f v G v v v T= + + Θ ∈ (8)

0

() ()

() max ()
k

k
i

k k k
k i i

k k k k
i i i

y T

if v

v f v if T

f v f v if T and v
∈ ∩ Ω

 ∈ ΩΘ = − ∩ Ω = Φ
− + ∩ Ω ≠ Φ ∉ Ω

 (9)

3 Improved Backtracking Search Algorithm

3.1 BSA

BSA is a population-based iterative evolutionary algorithm designed to be a global
minimizer. BSA maintains a population of N individual and D-dimensional members

 An Improved BSA for Constrained Optimization Problems 225

for solving bound constrained global optimization. Moreover, BSA possesses a mem-
ory in which it stores a population from a randomly chosen previous generation for
use in generating the search-direction matrix [17]. To implement BSA, the following
processes need to be performed.

BSA initials current population and history population according to Eq.(10) and
(11) respectively where U is the uniform distribution.

 , ~ (,)i j j jP U l u (10)

 , ~ (,)i j j joldP U l u (11)

At the start of each iteration, an oldP redefining mechanism is introduced in BSA
through the rule defined by Eq.(12) and (13), where a, b~ U(0,1) is satisfied.

,

,

P a b
oldP

oldP otherwise

<
=

 (12)

 : ()oldP permuting oldP= (13)

BSA has a random mutation strategy that uses only one direction individual for
each target individual. BSA generates a trial population, taking advantage of its expe-
riences from previous generations. F controls the amplitude of the search-direction
matrix. The initial form of the trial individual ui is created by Eq.(14).

 ()i i i iu P F oldP P= + × − (14)

Trial individuals with better fitness values for the optimization problem are used to
evolve the target population individuals. BSA generates a binary integer-valued ma-
trix called map guiding crossover directions. Eq.(15) shows BSA’s crossover strategy.

, ,

,
,

, 1

,
i j i j

i j
i j

P map
V

u otherwise

==

 (15)

At this step, a set of vi which has better fitness values than the corresponding xi are
utilized to renew the current population as next generation population according to a
greedy selection mechanism as shown in Eq.(16).

() (),

.
i i inext

i
i

v if f v f p
x

x otherwise

≤
=

 (16)

3.2 Differential Evolution

Differential evolution (DE) is proposed by Storn and Price in 1995. So far, more than
six mutation strategies have been proposed [18, 19] owing to its simple yet efficient
properties. Compared with original DE mutation, “Rand-to-best” [18] mutation is able

226 W. Zhao et al.

to improve population convergence, guiding evolution towards better directions.
“Rand-to-best” mutation strategy is introduced as follows:

 1 2()best r riu x F x x= + × −

 (17)

Where 1r , 2r are integers randomly selected from 1 to N, and satisfy
1 2r r≠ . The

scaling factor F is a real number randomly selected between 0 and 1. bestx

 is the best
individual in the current population, and

iu
 is the mutant vector.

Subsequently, the crossover operation is implemented to generate a trial vector vi
shown by Eq. (18). Where Ii is an integer selected randomly from 1 to D, rj is selected
randomly from 1 to 0 and j denotes the j-th dimension. The index k is the number of
iteration, and Cr is the crossover control parameter.

,

,

,

,

,

j

k
i j r ik

i j k
i j

u r c or j I
v

x otherwise

 ≤ ==

 (18)

3.3 Breeder Genetic Algorithm Mutation Operator

15

,
0,

,

2 1/
, 1,...,

s
i j i s

si j

i j

x rang rand D
v j D

x otherwise

α −

=

 ± × <= =

 (19)

 6(() ()) (1 _ / _)irang u i l i current gen total gen= − × − (20)

Improved version of breeder genetic algorithm mutation operator proposed in [20, 21]
intends to produce a highly explorative behavior in the early stage and ensures the
global convergence in the later stage. Where U(0,1) is the uniform random real num-
ber generator between 0 and 1. The plus or minus sign is selected with a probability of
0.5, and {0,1}sα ∈ is randomly generated with expression (1) 1 /16sP α = = . Current

generation number is denoted as current_gen, and total generation number is denoted
as total_gen. Individuals in the interval [,]i i i ix rang x rang− + are generated after IBGA

mutation.

3.4 IBSA

BSA has a powerful exploration capability but a relatively slow convergence speed,
since the algorithm uses historical experiences to guide the evolution. Focusing on
excellent convergent performance of “Rand-to-best” mutation, it is combined with
BSA. Meanwhile, IBGA is utilized to expand population diversity. Pseudo–code of
IBSA can be present as follows:

Step 1: Initialize population size N, mutation probability pm, stage control parameter
rate, crossover probability Cr, total number of iteration IterMax and penalty coeffi-
cient R if SFP is used.

 An Improved BSA for Constrained Optimization Problems 227

Step 2: Initialize population P, and historical population oldP using Eq.(10) and
Eq.(11), respectively.

Step 3: Evaluate the population P using Eq.(5) or Eq.(8).

Step 4: k=0;

Step 5: Update the historical population oldP using Eq.(12) and Eq.(13).

Step 6: if k<IterMax*rate then perform mutation and crossover operators according to
Eq.(14) and Eq.(15), and goto Step 8.

Step 7: if pm<=0.05 then perform mutation operator using Eq.(19), else perform mu-
tation and crossover operators according to Eq.(17) and Eq.(18), where the factor F is
generated from the range of [-1,-0.4] and [0.4,1] uniformly.

Step 8: Evaluate the population P using Eq.(5) or Eq.(8), and select the best individual
Xbest.

Step 9: k=k+1, if k<IterMax goto Step 5.

Step 10: output Xbest.

4 Experiments

We use a set of 13 benchmark problems [22] in this paper to evaluate the performance
of BSA, which were tested widely in evolution computation domain to show the per-
formance of different algorithms for constrained optimization problems. The objec-
tive functions can be divided into 6 classes: quadratic, nonlinear, polynomial, cubic,
linear, and exponential. Main characteristics of these functions are summarized in
Tab.1.

Table 1. Main properties of benchmark functions(n: number of variables, |F|/|S|: the ratio of the
feasible region to the given box constrained area, LI, NE, NI: number of linear inequality,
nonlinear equality, and nonlinear inequality, a: number of active constraints at optimum)

 known optimal n Min/Max type f(x) type |F|/|S| LI NE NI a

G01 -15 13 Minimum quadratic 0.011% 9 0 0 6

G02 0.803619 20 Maximum nonlinear 99.90% 1 0 1 1

G03 1 10 Maximum polynomial 0.002% 0 1 0 1

G04 -30665.539 5 Minimum quadratic 52.123% 0 0 6 2

G05 5126.4981 4 Minimum cubic 0.000% 2 3 0 3

G06 -6961.8139 2 Minimum cubic 0.006% 0 0 2 2

G07 24.306291 10 Minimum quadratic 0.000% 3 0 5 6

G08 0.095825 2 Maximum nonlinear 0.856% 0 0 2 0

G09 680.630057 7 Minimum polynomial 0.512% 0 0 4 2

G10 7049.25 8 Minimum linear 0.001% 3 0 3 3

G11 0.75 2 Minimum quadratic 0.000% 0 1 0 1

G12 1 3 Maximum quadratic 4.779% 0 0 93 0

G13 0.0539498 5 Minimum exponential 0.000% 0 3 0 3

228 W. Zhao et al.

Additionally, for each problem, 30 independent runs were performed. Other para-
meters are given in Tab.2.

Table 2. Parameter values

 N IterMax Cr pm rate R DIM_RATE

values 80 10000 0.9 0.05 0.6 1050 1

Table 3. Results for IBSA using SFP

 optimal best mean worst std

G01 -15 -15 -15 -15 0

G02 0.803619 0.803614 0.788434 0.761742 0.009713

G03 1 1.012555 1.011447 0.992238 0.003785

G04 -30665.539 -30665.539 -30665.539 -30665.539 0

G05 5126.4981 5126.484154 5126.484154 5126.484154 0

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0

G07 24.306291 24.306209 24.306214 24.306279 0.000015

G08 0.095825 0.095825 0.095825 0.095825 0

G09 680.630057 680.630057 680.630057 680.630057 0

G10 7049.25 7049.248021 7049.248039 7049.248158 0.000037

G11 0.75 0.7499 0.7499 0.7499 0

G12 1 1 1 1 0

G13 0.0539498 0.053942 0.053942 0.053942 0

Table 4. Results for IBSA using PFP

 optimal best mean worst std

G01 -15 -15 -15 -15 0

G02 0.803619 0.803615 0.789926 0.75071 0.013549

G03 1 1.01256 1.010525 0.972599 0.007409

G04 -30665.539 -30665.539 -30665.539 -30665.539 0

G05 5126.4981 5126.484154 5126.484154 5126.484154 0

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0

G07 24.306291 24.306209 24.306213 24.306235 0.000007

G08 0.095825 0.095825 0.095825 0.095825 0

G09 680.630057 680.630057 680.630057 680.630057 0

G10 7049.25 7049.248021 7049.248051 7049.248432 0.000081

G11 0.75 0.7499 0.7499 0.7499 0

G12 1 1 1 1 0

G13 0.0539498 0.053942 0.06679 0.439383 0.070372

 An Improved BSA for Constrained Optimization Problems 229

4.1 Results of the Proposed Method (IBSA)

Table 3 and Table 4 list the experimental results of the IBSA algorithm using SFP and
PFP respectively. They include the known optimal solution for each test problem and
the obtained best, mean, worst and standard deviation values. The best obtained by
IBSA, which are same to or better than the known optimal, are marked in boldface.

As seen from Table 3, the IBSA using SFP algorithm can find the global optimal
solutions for 12 problems except G02 in terms of the best results. However, result for
problem G02 is very close to the optimal. The standard deviations for G01, G04, G05,
G06, G08, G09, G11, G12 and G13 are zero, so we consider IBSA-PFP algorithm is
under stable condition. G07 has found better solution than the known optimal solu-
tion. G03, G05, G11 and G13 are obtained better solutions as well, as a result of δ
settings.

Table 4 shows the IBSA using PFP algorithm can also find the global optimization
for 12 problems except G02 which is very close to the optimal. Within the allowed
equality constraints violation ranges, better solutions have been found than the known
optimal solutions such as G3, G5, G10, G11 and G07.As for problem G13, there are
29 out of 30 times finding better solution than the optimal.

Table 5. Results for BSA using SFP

 best of IBSA best mean worst std

G01 -15 -15 -15 -15 0

G02 0.803614 0.80358 0.79666 0.785462 0.00506

G03 1.012555 1.012298 1.002612 0.954234 0.016466

G04 -30665.539 -30665.539 -30665.539 -30665.539 0

G05 5126.484154 5126.4967 5198.319116 5415.4138 77.85568

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0

G07 24.306209 24.306242 24.321343 24.343854 0.018588

G08 0.095825 0.095825 0.095825 0.095825 0

G09 680.630057 680.630057 680.630057 680.630057 0

G10 7049.248021 7049.2555 7049.617975 7052.634 0.633024

G11 0.7499 0.7499 0.749901 0.749918 0.000003

G12 1 1 1 1 0

G13 0.053942 0.055766 0.633725 0.999993 0.305339

4.2 Comparison with BSA Using Penalty Function

We compare results of IBSA using penalty functions from Table 3 and Table 4 with
BSA using penalty functions from Table 5 and Table 6 respectively. It can be found
that IBSA performs far superior to BSA when solving problem G2, G3, G05, G07,
and G10.When it comes to problem G13, IBSA successfully finds global optimization
29 times in 30 runs. However, there is only once that BSA finds the optimal. Im-
proved strategies on BSA enhance the stability of the algorithm.

230 W. Zhao et al.

Table 6. Results for BSA using PFP

 best of IBSA best mean worst std

G01 -15 -15 -15 -15 0

G02 0.803615 0.803599 0.798024 0.792409 0.005266

G03 1.01256 1.012417 0.993189 0.899105 0.031189

G04 -30665.539 -30665.539 -30665.539 -30665.539 0

G05 5126.484154 5126.496714 5215.3329 5477.3847 114.543

G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0

G07 24.306209 24.306244 24.323931 24.343783 0.018832

G08 0.095825 0.095825 0.095825 0.095825 0

G09 680.630057 680.630057 680.630057 680.630057 0

G10 7049.248021 7049.257983 7049.394 7049.7464 0.11844

G11 0.7499 0.7499 0.7499 0.749901 0

G12 1 1 1 1 0

G13 0.053942 0.069471 1.01215 13.782101 2.428104

Table 7. Comparison results with other algorithms using penalty function

 optimal IBSA MGSO SAPF OPA

G01 -15 -15 -15.000 -15.000 -15.000

G02 0.803619 0.803615 0.803457 0.803202 0.803619

G03 1 1.012555 1.00039 1 0.747

G04 -30665.539 -30665.539 -30665.539 -60,665.401 -30,665.54

G05 5126.4981 5126.484154 5,126.50 5,126.91 5,126.50

G06 -6961.8139 -6961.8139 –6,961.8139 –6,961.046 –6,961.814

G07 24.306291 24.306209 24.917939 24.838 24.306

G08 0.095825 0.095825 0.095825 0.095825 0.095825

G09 680.630057 680.630057 680.646 680.773 680.63

G10 7049.25 7049.248021 7,052.07 7,069.98 7,049.25

G11 0.75 0.7499 0.7499 0.749 0.75

G12 1 1 1 1 1

G13 0.0539498 0.053942 0.058704 0.053941 0.447118

4.3 Comparison with Other Algorithms Using Penalty Function

Constraint handling method highly affects the performance of intelligent algorithm
for constrained optimization. To test the performance of the IBSA, we compare it
with other algorithms.

 An Improved BSA for Constrained Optimization Problems 231

The three algorithms are based on penalty function, such as modified group search
optimizer algorithm with penalty function (MGSO) [23], genetic algorithm (GA) with
a self-adaptive penalty function (SAPF) [24], over-penalty approach (OPA) [25].
Comparison results are summarized in Table 7. The best optimum values are listed.

As seen from Table 7, the performance of IBSA is much better than MGSO, SAPF,
OPA on problems G03, G05, G07, G09 and G10 according to the best results ob-
tained from algorithms with penalty function. Problem G01, G08, G11, G12 can be
also solved successfully by IBSA. For problems g04, and g06, MGSO, OPA, and
IBSA show the similar performance in terms of the best optimum, and better than
SAPF. In all, using penalty function for handling constraint, IBSA shows better per-
formance than other three algorithms for most problems.

4.4 Comparison with Other Algorithms Using Different Constraint Handling
Methods

We employs three competitive evolutionary algorithms to further compare IBSA with
other algorithms with different constraint handling methods, which were stochastic
ranking (SR) method [22], improved stochastic ranking (ISR) [25] evolution strategy,
and the simple multimember evolutionary strategy (SMES) [26]. Comparison results
are summarized in Table 8.

Table 8. Comparison results with other algorithms using different constraint handling methods

 optimal IBSA SR ISRES SMES

G01 -15 -15.000 -15.000 -15.000 -15.000

G02 0.803619 0.803615 0.803516 0.803519 0.803601

G03 1 1.012555 1 1.001 1.000

G04 -30665.539 -30665.539 -30,665.539 –30,665.539 -30,665.54

G05 5126.4981 5126.484154 5,126.50 5,126.50 5,126.60

G06 -6961.8139 -6961.8139 –6,961.814 –6,961.814 –6,961.814

G07 24.306291 24.306209 24.306 24.306 24.327

G08 0.095825 0.095825 0.095825 0.095825 0.095825

G09 680.630057 680.630057 680.63 680.63 680.632

G10 7049.25 7049.248021 7,049.25 7,049.25 7,051.90

G11 0.75 0.7499 0.75 0.75 0.75

G12 1 1 1 1 1

G13 0.0539498 0.053942 0.053957 0.053957 0.053986

As seen from Table 8, Problem G01, G03, G04, G06, G08, G11 and G12 can be
found optima by these four algorithms. IBSA performs better when dealing with G03,
G05 and G13. For problems G07, G09 and G10, IBSA, SR, and ISRES show the
similar performance in terms of the best optimum, and better than SMES.

232 W. Zhao et al.

5 Conclusion

This paper proposes an improved version BSA algorithm, called IBSA, which is very
effective for solving constrained optimization problems. The proposed algorithm
employs BSA operations, variant DE operations, and IBGA mutation at different
stages. IBSA has better performance than BSA using PFP and SPF, and other three
algorithms using penalty function to handle constraints according to experimental
results. Comparing with other algorithms with different constraint handling methods,
the results show that IBSA is comparable with its competitors. As a consequence, the
effect of constraint handling methods on the performance of IBSA algorithm can be
investigated in future works. Another direction is to improve algorithm to enhance
accuracy of finding global optimum on some problems including equality constraint,
such as G03 and G13.

Acknowledgement. This work was supported by the NSFC Joint Fund with Guang-
dong of China under Key Project U1201258, the Shandong Natural Science Funds for
Distinguished Young Scholar under Grant No.JQ201316, and the Natural Science
Foundation of Fujian Province of China under Grant No.2013J01216.

References

1. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor (1975)

2. Storn, R., Price, K.V.: Differential evolution: a simple and efficient adaptive scheme for
global optimization over continuous spaces, Technical Report TR-95-012, Berkeley, CA
(1995)

3. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of coo-
perating agents. IEEE Trans. on Systems. Man, and Cybernetics 26, 29–41 (1996)

4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE In-
ternational Conference on Neural Networks, pp. 1942–1948. IEEE Press (1995)

5. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the
6th International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE
Press (1995)

6. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report TR-06, Erciyes University, Engineering Faculty, Computer Engineering Depart-
ment (2005)

7. Cui, Z.H., Cai, X.J.: Using social cognitive optimization algorithm to solve nonlinear eq-
uations. In: Proc. 9th IEEE Int. Conf. on Cog. Inf., pp. 199–203 (2010)

8. Chen, Y.J., Cui, Z.H., Zeng, J.H.: Structural optimization of Lennard-Jones clusters by hy-
brid social cognitive optimization algorithm. In: Proc. of 9th IEEE Int. Conf. on Cog. Inf.,
pp. 204–208 (2010)

9. Cui, Z., Shi, Z., Zeng, J.: Using social emotional optimization algorithm to direct orbits of chao-
tic systems. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010.
LNCS, vol. 6466, pp. 389–395. Springer, Heidelberg (2010)

10. Wei, Z.H., Cui, Z.H., Zeng, J.C.: Social cognitive optimization algorithm with reactive
power optimization of power system. In: Proc. of 2010 Int. Conf. Computational Aspects
of Social Networks, pp. 11–14 (2010)

 An Improved BSA for Constrained Optimization Problems 233

11. Xu, Y., Cui, Z., Zeng, J.: Social emotional optimization algorithm for nonlinear con-
strained optimization problems. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S.
(eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 583–590. Springer, Heidelberg (2010)

12. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Springer, Berlin (2010)
13. Yang, X.S.: Nature-Inspried Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome

(2010)
14. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Har-

mony search. Simulation 76, 60–68 (2001)
15. Simon, D.: Biogeography-Based Optimization. IEEE Transactions on Evolutionary Com-

putation 12, 702–713 (2008)
16. He, S., Wu, Q.H., Saunders, J.R.: A novel group search optimizer inspired by animal be-

havioral ecology. In: Proceedings of IEEE Congress on Evolutionary Computation,
pp. 16–21 (2006)

17. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization
problems. Applied Mathematics and Computation 219, 8121–8144 (2013)

18. Mezura-Montes, E., Miranda-Varela, M., Gómez-Ramón, R.: Differential evolution in con-
strained numerical optimization: An empirical study. Information Sciences 180, 4223–4262
(2010)

19. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimen-
tal analysis. Artificial Intelligence Review 33, 61–106 (2010)

20. Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and hybrid evolutionary
algorithm to solve constrained optimization problems. IEEE Transaction on Systems 37,
560–575 (2007)

21. Jia, G., Wang, Y., Cai, Z., Jin, Y.: An improved (μ+λ)-constrained differential evolution
for constrained optimization. Information Sciences 222, 302–322 (2013)

22. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.
IEEE Transactions on Evolutionary Computation 4, 284–294 (2000)

23. Wang, L., Zhong, Y.: A modified group search optimiser for constrained optimisation
problems. Int. J. Modelling, Identification and Control 18, 276–283 (2013)

24. Tessema, B., Yen, G.: A self-adaptive penalty function based algorithm for constrained opti-
mization. In: Proceedings 2006 IEEE Congress on Evolutionary Computation, pp. 246–253
(2006)

25. Runarsson, T.P., Yao, X.: Search biases in constrained evolutionary optimization. IEEE
Transactions on Systems, Man, and Cybernetics 35, 233–243 (2005)

26. Mezura-Montes, E., Coello Coello, C.A.: A simple multimembered evolution strategy to
solve constrained optimization problems. IEEE Transactions on Evolutionary Computa-
tion 9, 1–17 (2005)

